Совместными
усилиями
к общему успеху...
с_1997 года
"ИНТЕХ ГмбХ"
RU

Абсорбция. Абсорбенты.

Абсорберы

Общее описание процесса абсорбции

Термин абсорбция произошел от латинского слова absorbere, что в переводе означает «поглощать». По сути, это процесс полного или частичного поглощения газа (который способен в нем почти целиком раствориться) жидким поглотителем (ученые дали ему название «абсорбент»). Обратный процесс называется десорбция, при нем, наоборот, идет выделение газа из раствора.

Для разделения газов друг от друга в их смесях, с целью очистки либо получения ценных компонентов существуют и другие способы: глубокое охлаждение, адсорбция, и др., но чаще всего используется именно метод абсорбции, потому что полное извлечение такого рода компонентов требуется редко.

Процесс абсорбции или десорбции всегда проходит жидкую и газовую фазы, во время которых и происходит трансформация вещества из газа в жидкость при процессе абсорбции и, наоборот, из жидкости в газ при процессе десорбции. Именно поэтому процессы абсорбции называются одним из способов массопередачи (обмен масс с помощью поверхности раздела или через проницаемую стенку в процессе двух фаз или между двумя веществами).

На практике процессу абсорбции подвергаются газовые смеси, а не какие-либо отдельные виды газов. Такие составные доли называются компонентами, а те части, которые не поглощаются, имеют название инертный газ. Вместе с поглотителем этот газ представляет собой носитель компонента в жидкой и газовой фазах.

Жидкая фаза включает в себя поглотитель и компонент процесса абсорбции. Сам поглотитель – это, по сути, раствор активного компонента, который вступает в химическую реакцию с абсорбируемым его аналогом, а само вещество, в котором активный компонент растворяется, называют растворителем.

Абсорбция бывает двух видов:

  1. Физическая. (В процессе физической абсорбции поглотитель и инертный газ не принимают участия в процессе перехода компонента из фазы в фазу и не растрачиваются.)
  2. Химическая. (Химическая абсорбция предполагает реакцию, которая происходит в результате химического взаимодействия поглотителя с компонентом санитарной очистки газов, в результате образуется отбросный раствор, который после стадии обезвреживания обычно сливают в канализацию.)

Для успешного проведения абсорбции необходим специальный аппарат. Такие приборы имеют свою условную классификацию в зависимости от вида поверхности контакта.

Абсорберы. Описание и виды

  1. Поверхностные

    Сюда в свою очередь входят подвиды:

    • поверхностные абсорберы (в них поверхность контакта двух фаз – это зеркало жидкости);
    • пленочные абсорберы (в процессе участвует поверхность пленки жидкости);
    • насадочные абсорберы (они имеют специальную насадку, по которой из тел разных форм (кусковой материал, кольца и т. д.) стекает жидкость.);
    • пленочные механические абсорберы.

    В целом, поверхность контакта для такого вида абсорберов определяется геометрическими параметрами поверхности элементов (к примеру, той же насадки), но во многих случаях бывает ей не равна.

  2. Барботажные

    В барботажных абсорберах поверхность контакта зависит от режима гидродинамики - (расходов жидкости и газа). В этом варианте поверхность контакта разрабатывается потоками газа, который распределяет жидкость в виде струек и пузырьков. Подобное движение газа называется барботажем, отсюда и пошло название самого прибора. Процесс происходит путем заполнения аппарата жидкостью и пропускания через нее газа. Такие опыты могут проводиться и в двух других разновидностях: насадочных абсорберах и барботажных абсорберах колонного типа, которые имеют специальные тарелки различного типа.

    Сюда же входит вариант барботажных абсорберов, в которых жидкости перемешивают механическими мешалками.

  3. Распыляющие

    В этих абсорберах поверхность контакта так же, как у барботажных абсорберах, зависит от режима гидродинамики, но отличается способом образования: в этом случае жидкость в общей массе газа распыляется на мелкие капельки.

    В свою очередь они тоже делятся на подвиды:

    • Форсуночные (жидкость распыляется с помощью форсунок);
    • Скоростные прямоточные (жидкость распыляется в токе движущегося с большой скоростью газа);
    • Механические (жидкость распыляется с помощью вращающихся механических устройств).

Один и тот же аппарат может оказаться в разных группах, это обычно определяют условия его работы. (К примеру, насадочные абсорберы способны работать как в барботажном, так и в пленочных режимах.)

Диаметр, высоту и прочие параметры абсорбера определяют с помощью расчетов, исходя из степени извлекаемого компонента, производительности и прочих условий задач. Для подобных подсчетов понадобятся сведения по кинетике и статике процесса. Кинетические данные определяются типом и режимом работы аппарата, а статические всегда можно найти в справочных таблицах, затем считают с помощью параметров термодинамики и вычисляют на практике. Если какие-либо данные найти нет возможности, их получают с помощью опытов.

Из всех существующих аппаратов сегодня самое широкое распространение получили барботажные тарельчатые и насадочные абсорберы.

Выбирая подходящий абсорбер, в каждом индивидуальном случае следует исходить из химических и физических факторов проведения процесса, обязательно учитывая и все экономические и технические моменты.

Чтобы лучше понять, как абсорбционные процессы применяются на практике, надо хорошо понимать некоторые способы применения их в химической отрасли промышленности.

Существует несколько таких основных моментов:

  1. Готовый продукт получают с помощью процесса поглощения газа жидкостью.

    В качестве примера можно привести абсорбцию оксида серы (SO3) в ходе производства серной кислоты, абсорбцию окисей азота водой при производстве азотной кислоты, абсорбцию растворов щелочи для получения нитратов и НС1 для получения соляной кислоты. В этих случаях абсорбцию проводят без дальнейшей десорбции.

  2. Улавливание ценных компонентов из газовой смеси для предотвращения их потерь или с целью их удаления в соответствии с санитарными нормативами.

    Чтобы проиллюстрировать это, лучше всего подходит рекуперация спирта, эфира, кетонов и прочих летучих растворителей.

  3. Для выделения отдельных ценных компонентов разделяют газовые смеси

    В данном случае у поглотителя должна быть большая поглотительная способность в сравнении с извлекаемым компонентом и несколько меньшей для других частей смеси газов (это еще называют селективной или избирательной абсорбцией.) При этом абсорбцию дополнительно сочетают с десорбцией так, чтобы они в своем чередовании образовывали круговой процесс.

    Ярким примером может послужить абсорбция ацетилена из крекинговых либо газов пиролиза или бензола из газа кокса, природного газа, абсорбция бутадиена из газа от разложения этилового спирта и т.п.

  4. Необходимость очистки газа от вредных компонентов с целью избавления их от примесей.

В рассматриваемом варианте извлеченный компонент еще и используют, поэтому его выделяют с помощью процесса десорбции и отправляют на дальнейшую переработку. Когда количество извлекаемой составной части очень мало и поглотитель не несет особой ценности, после абсорбции раствор сливают в канализацию.

В качестве примеров можно привести очистку газов нефти и кокса от Н2S, обсушивание сернистого газа при получении серной кислоты, очищение смеси азота и водорода, чтобы синтезировать аммиак. Часто используется очистка по санитарным нормам топочных отходящих газов от SO2, очистка от абгаза (это выделяющаяся парогазовая смесь) после процесса конденсации хлора в жидком виде, от фтористых газов, которые выходят, когда получают минеральные удобрения и многие другие.

Из описаний способов применений в химической отрасли промышленности можно сделать логический вывод, что абсорбцию часто сочетают с десорбцией. Такое сочетание позволяет использовать поглотитель много раз и в чистом виде выделять абсорбированный компонент. Чтобы его получить, раствор после пребывания в абсорбере тут же направляют на процесс десорбции, где и выделяется нужный компонент, а освобожденный от него (регенерированный) раствор опять возвращают для новой абсорбции. При этой схеме кругового процесса поглотитель практически не растрачивается (не считая совершенно незначительных его потерь) и постоянно проходит циркуляцию типа абсорбер — прибор десорбции — абсорбер.

В случае наличия малоценного поглотителя многократное использование поглотителя не проводят при процессе десорбции, после освобожденный в приборе десорбции поглотитель выбрасывают в канализацию, а в абсорбер кладут новый.

Условия, которые очень благоприятны для процесса десорбции, абсолютно противоположны условиям, которые благотворят абсорбции. Чтобы осуществить над раствором десорбцию, необходимо обеспечить довольно сильное давление компонента, чтобы он смог выделиться в процессе газовой фазы. При проведении же абсорбции, особенно когда она дает необратимую химическую реакцию, нужные компоненты не поддаются освобождению от поглотителя путем десорбции. Регенерацию подобных поглотителей возможно производить только еще одним химическим методом.

На сегодняшний день для всех видов приборов пока не существует достаточно надежного способа, который мог бы позволить определять коэффициент массопередачи с помощью расчета или опираясь на лабораторные опыты либо модельные варианты. Тем не менее, для некоторых видов аппаратов постепенно удается их найти даже с помощью довольно простых опытов и достоверной точностью вычислений.